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Abstract.

The Fredholm index is an indispensable item in the operator theorist’s tool-
kit and a very simple prototype of the application of algebraic topological
methods to analysis. This document contains all the basics one needs to
know to work with Fredholm theory, as well as many examples. The actual
talk that I gave only dealt with the essentials and I omitted most of the
proofs presented here. At the end, I present my solutions to some of the ex-
ercises in Murphy’s C∗-algebras and operator theory that deal with compact
operators and Fredholm theory.

A (not so brief) review of compact operators.

Let X be a topological space. Recall that a subset Y ⊆ X is said to be
relatively compact if Y is compact in X. Recall also that a subset Y ⊆ X
is said to be totally bounded if ∀ ε > 0, ∃ n ∈ N, and x1, . . . , xn ∈ X
such that

Y ⊆
n⋃
k=1

Bε(xk)

Definition. A linear map u : X → Y between Banach spaces X and Y is
said to be compact if u(S) is relatively compact in Y , where S := {x ∈ X :
‖x‖ ≤ 1} = B1(0). N

Proposition. Let (X, d) be a complete metric space. Then Y ⊆ X is rela-
tively compact if and only if Y is totally bounded.
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Proof. Assume first that Y is relatively compact. Let ε > 0. Then,
{Bε(x)}x∈Y is an open cover for Y . Since Y is compact, it follows that

there are n ∈ N, x1, . . . , xn ∈ Y such that {Bε(xk)}nk=1 is an open cover for
Y . Hence,

Y ⊆ Y ⊆
n⋃
k=1

Bε(xk),

and therefore Y is totally bounded.

Conversely, we now suppose that Y is totally bounded. We claim that Y is
also totally bounded. Indeed, let ε > 0, since Y is totally bounded there are
n ∈ N and x1, . . . , xn ∈ X such that

Y ⊆
n⋃
k=1

Bε/2(xk),

whence

Y ⊆
n⋃
k=1

Bε/2(xk) ⊂
n⋃
k=1

Bε(xk),

proving the claim. Next, we show that Y is compact by proving that any
sequence (yk)

∞
k=1 in Y admits a convergence subsequence. Since X is a com-

plete metric space and Y is closed, it suffices to find a Cauchy subsequence.
Using that Y is totally bounded, we find for each n ∈ N a finite set Fn ⊂ X
such that

Y ⊆
⋃
x∈Fn

B1/n(x),

Since (yk)
∞
k=1 is a sequence in Y ⊆

⋃
x∈F1

B1(x), there must be x1 ∈ F1 such
that infinitely many terms of (yk)

∞
k=1 are in B1(x1). Let

J1 := {k ∈ N : yk ∈ B1(x1)}.

By definition, (yk)k∈J1 is a subsequence of (yk)
∞
k=1. Similarly, there must

be x2 ∈ F2 such that such that infinitely many terms of (yk)k∈J1 are in
B1/2(x2). Let

J2 := {k ∈ J1 : yk ∈ B1/2(x2)}.

We keep doing thus and get, at the j-th step an element xj ∈ Fj and an
infinite set

Jj := {k ∈ Jj−1 : yk ∈ B1/j(xj)}.

Further, J1 ⊇ J2 ⊇ . . . ⊇ Jj ⊇ . . . is a decreasing sequence of infinite subsets
of N. Thus, for each j ∈ N we can pick kj ∈ Jj such that k1 < k2 < . . . <
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kj < . . .. This gives a sequence (ykj )
∞
j=1 which is clearly a subsequence of

(yk)
∞
k=1. Finally, since yk/j ∈ B1/j(xj) it follows that for any j < l

d(ykj , ykl) ≤ d(ykj , xj) + d(xj , ykl) <
1

j
+

1

j
=

2

j
.

Thus, (ykj )
∞
j=1 is Cauchy, as we wanted to show. �

Corollary. A linear map u : X → Y between Banach spaces X and Y is
compact if and only if u(S) is totally bounded.

Remark. If u : X → Y is compact, then u(S) is totally bounded and
therefore bounded. Thus,

‖u‖ = sup
x∈S
‖u(x)‖ <∞

Hence, u ∈ B(X,Y ). We will denote by K(X,Y ) to the set of compact
operators from X to Y . When X = Y we just write K(X). We will show
that K(X) is a closed ideal of B(X). H

Example. • For k ∈ C([0, 1]2), we define u : C([0, 1])→ C([0, 1]) by

u(f)(s) :=

∫ 1

0
k(t, s)f(t)dt ∀ f ∈ C([0, 1]), s ∈ [0, 1]

Then, one can use Arzela-Ascoli’s theorem to show that u ∈ K(C([0, 1])).

• Similarly, if we define v : C([0, 1])→ C([0, 1]) by

v(f)(s) :=

∫ s

0
f(t)dt ∀ f ∈ C([0, 1]), s ∈ [0, 1],

we also get v ∈ K(C([0, 1])). This is not a particular case of the first example,
since the kernel for v is given by k(t, s) := χ[0,s](t), which is not a continuous
map.

• In general, take (X,M, µ) a measure space, 1 < p < ∞, q the Hölder
conjugate for p and k : X ×X → C a measurable function on M⊗M such
that ∫

X

(∫
X
|k(x, y)|pdµ(x)

)q/p
dµ(y) <∞.

Then, if we define w : Lp(X, ν)→ Lp(X,µ)

w(f)(x) =

∫
X
k(x, y)f(y)dµ(y) ∀ Lp(X,µ), x ∈ X,

we can show that w ∈ K(Lp(X,µ)). H
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The following theorem gives a useful alternative characterizations for com-
pact operators.

Theorem. Let X,Y be Banach spaces and u ∈ B(X,Y ). The following are
equivalent:

(i) u ∈ K(X,Y ).

(ii) For each bounded set B ⊆ X, u(B) is relatively compact in Y .

(iii) If (xn)∞n=1 is a bounded sequence in X, then (u(xn))∞n=1 admits a con-
vergent subsequence in Y .

Proof.
(i)⇒ (ii) Suppose u : X → Y is compact. Let B ⊂ X be a bounded set. Then,

there is an M > 0 such that B ⊂ BM (0). Notice that BM (0) =
MB1(0), so since u is a linear map it follows that u(B) ⊂ Mu(S),
where as before S = B1(0). Since u is compact, u(S) is relatively
compact and therefore u(B) is a closed subset of a compact set, whence
compact. That is, u(B) is relatively compact in Y .

(ii)⇒ (iii) We now assume that for each bounded set B ⊆ X, u(B) is relatively
compact in Y . Let (xn)∞n=1 is a bounded sequence in X. Then, B :=
{xn : n ∈ N} is a bounded subset of X. Thus, u(B) is compact in
Y . Since (u(xn))∞n=1 is a sequence in u(B), it follows that it admits a
convergent subsequence in Y .

(iii)⇒ (i) Finally, we assume that any bounded sequence in X is sent by u into
a sequence that admits a convergent subsequence in Y . We show that
u(S) is compact in Y . Let (yn)∞n=1 be any sequence in u(S). For each
n ∈ N, we find xn ∈ S such that

‖yn − u(xn)‖ < 1

n

Then, (xn)∞n=1 is a sequence in S and therefore bounded. Thus,
(u(xn))∞n=1 admits a convergent subsequence, say (u(xnk

))∞k=1 such
that u(xnk

)→ y ∈ Y as k →∞. Then,

‖ynk
− y‖ ≤ ‖ynk

− u(xnk
)‖+ ‖u(xnk

)− y‖ −→
k→∞

0

Thus, (yn)∞n=1 admits a convergent subsequence and therefore u(S) is
compact.

�
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Corollary. If u, v ∈ K(X,Y ) and λ ∈ C, then u+ λv ∈ K(X,Y ). That is,
K(X,Y ) is a vector subspace of B(X,Y ).

Proof. If (xn)∞n=1 is any bounded sequence in X, then compactness of u
implies that there is a subsequence (xnk

)∞k=1 such that (u(xnk
))∞k=1 converges.

Since (xnk
)∞k=1 is still a bounded sequence, compactness of v implies now that

there is a subsequence (xnl
)∞l=1 such that both (u(xnl

))∞l=1 and (v(xnl
))∞l=1

converge. Hence, ((u + λv)(xnl
))∞l=1 is converges and therefore u + λv is a

compact operator. �

Corollary. Let X ′ and Y ′ be also Banach spaces. If u ∈ K(X,Y ), v ∈
B(X ′, X), and w ∈ B(Y, Y ′), then uv ∈ K(X ′, Y ) and wu ∈ K(X,Y ′). In
particular this gives that K(X) is an ideal of B(X).

Proof. First, let (x′n)∞n=1 be any bounded sequence, say by M > 0, in X ′.
Then, (v(x′n))∞n=1 is a bounded sequence, by M‖v‖, in X and therefore, by
compactness of u, (uv(x′n))∞n=1 admits a convergent subsequence. Thus, uv
is compact.

Second, if (xn)∞n=1 is any bounded sequence in X, by compactness of u we
have that (u(xn))∞n=1 admits a convergent subsequence, say (u(xnk

))∞k=1,
converging to an element y ∈ Y . Since

‖wu(xnk
)− w(y)‖ ≤ ‖w‖‖u(xnk

)− y‖,

it follows that (wu(xnk
))∞k=1 converges to w(y) and therefore wu is compact.

�

So far we know that K(X) is an ideal of B(X), but one could ask whether it
is a proper ideal or a closed one. The following two theorems give answers
to this.

Theorem. K(X) = B(X) if and only if X is finite dimensional

Proof. Recall that X is finite dimensional if and only if S := B1(0) is
compact. Clearly, S is compact if and only if idX is a compact operator.
Thus, it’s enough to show that K(X) = B(X) if and only if idX is a compact
operator. Assume first that K(X) = B(X). Then, obviously idX ∈ K(X).
Conversely, suppose that idX ∈ K(X). Then, since K(X) is an ideal of
B(X), it follows that any a ∈ B(X) is also in K(X) because a = idXa.
Hence, K(X) = B(X). �
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Theorem. K(X,Y ) is a closed subset of B(X,Y ).

Proof. Let (un)∞n=1 be a sequence in K(X,Y ) that converges to some a ∈
B(X,Y ). We have to show that a ∈ K(X,Y ). Let (xn)∞n=1 be any bounded
sequence, say by M > 0, in X. Since u1 is compact, (xn)∞n=1 admits a
subsequence (xk1)∞k1=1 such that (u1(xk1))∞k1=1 is convergent. Since (xk1)∞k1=1

is also bounded by M and u2 is compact, (xk1)∞k1=1 admits a subsequence
(xk2)∞k2=1 such that both (u1(xk2))∞k2=1 and (u2(xk2))∞k2=1 are convergent.
Continuing this way, we get “nested subsequences”

(xn)∞n=1 ⊃ (xk1)∞k1=1 ⊃ (xk2)∞k2=1 ⊃ . . . ⊃ (xkj )
∞
kj=1 ⊃ . . .

such that ( ul(xkj ) )kj=1 is convergent for any l ≤ j. We define a sequence
(zm)∞m=1 by letting zm be the m-th term of the sequence (xkm)∞km=1. Hence,
(zm)∞m=1 is a subsequence of (xn)∞n=1. We claim that (a(zm))∞m=1 is a conver-
gent sequence in Y , and therefore it will follow that a ∈ K(X,Y ). To prove
the claim, it suffices to show that (a(zm))∞m=1 is Cauchy. Let ε > 0. Since
un → a, there is an N ∈ N such that ‖un − a‖ < ε

3M for all n ≥ N . Notice
that (zm)∞m=N is a subsequence of (xKN

)∞KN=1 and therefore (uN (zm))∞m=N

is convergent. Therefore, there is an N ′ ∈ N≥N such that

‖uN (zm)− uN (zm′)‖ <
ε

3

for all m,m′ ≥ N ′. Thus, if m,m′ ≥ N ′.
‖a(zm)− a(zm′)‖ ≤ ‖a(zm)− uN (zm)‖+ ‖uN (zm)− uN (zm′)‖+ ‖uN (zm′)− a(z′m)‖

≤ ‖a− uN‖‖zm‖+ ‖uN (zm)− uN (zm′)‖+ ‖uN − a‖‖zm′‖

<
ε

3M
M +

ε

3
+

ε

3M
M = ε

So (a(zm))∞m=1 is indeed Cauchy. �

Remark. • Notice that any bounded linear map with finite rank is compact.
Indeed, since in finite dimensional vector spaces compactness is equivalent
to closed and bounded, if u(X) is finite dimensional and B ⊂ X is bounded,
it follows that u(B) is closed and bounded in u(X) and therefore compact.

• Thus, combining the previous remark and our last theorem, we conclude
that the norm limit of finite rank operators is always a compact operator.
In Hilbert spaces, the converse is true: Any element of K(H) is norm limit
of finite rank operators. However, for arbitrary Banach spaces the converse
may not hold. It’s only true for those Banach spaces that have a Shauder
basis (i.e. there is (bn) in X such that for any x ∈ X there is (λn) in C such
that x =

∑
n λnbn in norm). H
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Recall that the dual space of a Banach space X, defined as X∗ := B(X,C),
is the set of bounded linear functionals on X. For any a ∈ B(X,Y ) we get
a∗ : Y ∗ → X∗ by letting a∗(ϕ) := ϕ ◦ a ∀ ϕ ∈ Y ∗. Then, since

|a∗(ϕ)(x)| = |ϕ(a(x))| ≤ ‖ϕ‖‖a‖‖x‖,

it follows that ‖a∗‖ ≤ ‖a‖ and therefore a∗ ∈ B(Y ∗, X∗).

Theorem. If u ∈ K(X,Y ), then u∗ ∈ K(Y ∗, X∗)

Proof. Let as usual S := B1(0) ⊂ X and let T := B1(0) ⊂ Y ∗. We only
need to show that u∗(T ) is totally bounded. Let ε > 0. Since u(S) is totally
bounded, there is n ∈ N and x1, . . . , xn ∈ S such that

u(S) ⊆
n⋃
k=1

Bε/3(u(xk))

Hence, for any u(x) ∈ u(S), there is 1 ≤ i ≤ n such that ‖u(x)−u(xi)‖ < ε
3 .

We use this to define v : Y ∗ → Cn by

v(ϕ) := ( ϕ(u(x1)), ϕ(u(x2)), . . . , ϕ(u(xn)) )

One checks that v is a bounded linear map, and furthermore v ∈ K(Y ∗,Cn),
because v has finite rank. Thus, v(T ) is totally bounded. That is, there is
m ∈ N and ϕ1, . . . , ϕm ∈ T such that for any v(ϕ) ∈ v(T ), there is 1 ≤ j ≤ m
so that ‖v(ϕ)− v(ϕj)‖ < ε

3 . Notice that

‖v(ϕ)− v(ϕj)‖ = max
1≤k≤n

{|ϕ(u(xk))− ϕj(u(xk))|}

= max
1≤k≤n

{|u∗(ϕ)(xk)− u∗(ϕj)(xk)|}

≥ |u∗(ϕ)(xi)− u∗(ϕj)(xi)|

Hence, we have ‖u(x) − u(xi)‖ < ε
3 and also |u∗(ϕ)(xi) − u∗(ϕj)(xi)| < ε

3 .
Therefore, since ϕ,ϕj ∈ T we have

|u∗(ϕ)(x)− u∗(ϕj)(x)|
≤ |ϕ(u(x)− u(xi))|+ |u∗(ϕ)(xi)− u∗(ϕj)(xi)|+ |ϕj(u(xi)− u(x))|
≤ ‖u(x)− u(xi)‖+ |u∗(ϕ)(xi)− u∗(ϕj)(xi)|+ ‖u(xi)− u(x)‖

<
ε

3
+
ε

3
+
ε

3
= ϕ

Since x ∈ S, this gives ‖u∗(ϕ) − u∗(ϕj)‖ < ε, so u∗(T ) is indeed totally
bounded. �
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Fredholm Theory

Preliminaries

Definition. A linear map u : X → Y between Banach spaces is said to be
bounded below if there is δ > 0 such that

‖u(x)‖ ≥ δ‖x‖ ∀ x ∈ X

N

Lemma. If u ∈ B(X,Y ) is bounded below, then u(X) is closed in Y .

Proof. Let (u(xn))∞n=1 be a sequence in u(X) that converges to some y ∈ Y .
We shall prove that y ∈ u(X). Since u is bounded below, there is a δ > 0
such that if m,n ∈ N, then we have

‖xm − xn‖ ≤
1

δ
‖u(xm)− u(xn)‖

In particular, this gives that (xn)∞n=1 is a Cauchy sequence inX and therefore
converges to a point x ∈ X. Finally, since

‖u(x)− y‖ ≤ ‖u(x)− u(xn)‖+ ‖u(xn)− y‖ ≤ ‖u‖‖x− xn‖+ ‖u(xn)− y‖,

it follows at once that y = u(x) ∈ u(X). �

Example. • If u ∈ B(X,Y ) is invertible, then for any x ∈ X we have

‖x‖ = ‖u−1(u(x))‖ ≤ ‖u−1‖‖u(x)‖

Hence, ‖u(x)‖ ≥ 1
‖u−1‖‖x‖, which gives that u is bounded below.

• If u ∈ B(X,Y ) is an isometry, then u is clearly bounded below. H

Lemma. A map u ∈ B(X,Y ) is not bounded below if and only if there is a
sequence of unit vectors (xn)∞n=1 in X such that limn→∞ u(xn) = 0

Proof. Suppose first that u is not bounded below. Then, there is x ∈ X
such that ‖u(x)‖ < δ‖x‖ for all δ > 0. In particular this says that u(x) = 0.
Hence the sequence xn := x/‖x‖ is the required one.

Conversely, assume that u is bounded below. Then, there is δ > 0 such that
‖u(x)‖ ≥ δ‖x‖ for all x ∈ X. In particular, if (xn)∞n=1 is any sequence of
unit vectors we have

‖u(xn)‖ ≥ δ‖xn‖ = δ > 0

So it’s impossible to have limn→∞ u(xn) = 0. �
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Definition. A subspace Y of a Banach space X is called a complemented
subspace if there exist a linear bounded operator p : X → Y such that
p(X) = Y and p(y) = y for all y ∈ Y . N

Lemma. A subspace Y of a Banach space X is a complemented subspace if
and only if there exists a closed subspace Z of X such that X = Y ⊕ Z.

Proof. Suppose first that Y is a complemented subspace of X. Then, there
is a linear bounded operator p : X → Y such that p(X) = Y and p(y) = y
for all y ∈ Y . Define Z := ker(p), it’s clear that Z is a closed subspace of
X. Then, if x ∈ Y ∩ Z we have p(x) = x and p(x) = 0. Thus Y ∩ Z = {0}.
Further, notice that since p(X) = Y , it follows that p2 = p. Hence, for any
x ∈ X we have that p(x) ∈ Y and x− p(x) ∈ Z. Since x = p(x) + (x− p(x))
we have indeed shown that X = Y ⊕ Z.

Conversely, assume that there exists a closed subspace Z of X such that
X = Y ⊕Z. Define p : X → Y by p(y+ z) := y for any y+ z ∈ Y ⊕Z = X.
Then, clearly p(X) = Y and p(y) = y for any y ∈ Y . It remains to prove
that p is in B(X,Y ). It’s clear that p is linear. That p is bounded is a
consequence of the closed graph theorem. Indeed, if ( (xn, yn) )∞n=1 is a
sequence, so that p(xn) = yn, converging to a point (x, y) ∈ X × Y , then
since xn−yn ∈ Z for all n and Z is closed, it follows that x−y ∈ Z, whence
p(x) = y and we are done. �

Lemma. Let X a Banach Space and Y a subspace of X. If Y has finite
dimension then Y is a complemented subspace of X.

Proof. Since Y has finite dimension, we have that there is n ∈ N, y1, . . . , yn ∈
Y such that Y is spanned by y1, . . . , yn. For each 1 ≤ k ≤ n, we define linear
functionals fk : Y → C by

fk

 n∑
j=1

λjyj

 := λk

Since all norms in finite dimension are equivalent, it’s easy to check that
each fk is a bounded linear functional. Thus, as a consequence of the Hahn-
Banach theorem, for each 1 ≤ k ≤ n, there is a bounded linear functional
Fk : X → C such that Fk|Y = fk. Thus, if we define

p(x) :=

n∑
j=1

Fj(x)yj ,

it follows that p ∈ B(X,Y ), p(X) = Y and that p(y) = y for all y ∈ Y . So
indeed Y is a complemented subspace. �

9



Fredholm Operators

Recall that if a : X → Y is a linear map, the codimension of a in Y is given
by codim(a(X)) := dim(Y/a(X)).

The following theorem is of major importance as it’s saying that (u− λ) is
a Fredholm operator whenever u ∈ K(X) and λ ∈ C \ {0}.

Theorem. Let u ∈ K(X) and λ ∈ C \ {0}. Then

(1) ker(u− λ) is finite dimensional.

(2) (u− λ)(X) is closed and finite codimensional in X.

Proof.

(1) Let Y := ker(u − λ). Notice that Y = u(Y ). Indeed, if x ∈ Y then
u(x) = λx and therefore x = u(λ−1x) ∈ u(Y ). Conversely, if y ∈ u(Y )
there is x ∈ Y such that y = u(x) = λx. Hence, we get u(y) = u(λx) =
λu(x) = λy, so y ∈ Y . Then, since Y is itself a Banach space, we have that
u|Y : Y → Y is in K(Y ). But u|Y = λidY and therefore idY is compact. But
we already know that idY is compact if and only if Y is finite dimensional.

(2) Since Y := ker(u − λ) is finite dimensional by (1), we use a previous
lemma to conclude that Y is a complemented subspace of X. Then, there is
a closed subspace Z such that X = Y ⊕ Z. by definition of Y we have that
(u−λ)(X) = (u−λ)(Z). Thus, to show that (u−λ)(X) is closed, it suffices
to prove that (u−λ)|Z is bounded below. Suppose on the contrary that it’s
not bounded below. Then, we know there must be a sequence of unit vectors
(zn)∞n=1 in Z such that (u−λ)(zn)→ 0 as n→∞. Since u is compact, there
is a subsequence (znk

)∞k=1 such that (u(znk
))∞k=1 is convergent, say to some

x ∈ X. Then, since

znk
=

1

λ
(u(znk

)− (u− λ)(znk
))

we have znk
→ x

λ . Thus, since Z is closed, we have that x ∈ Z. But, since
u is continuous we also have u(znk

) → u(xλ). By uniqueness of limit we
get u(xλ) = x, which gives u(x) = λx and therefore that x ∈ Y . Therefore
x ∈ Y ∩Z = {0} and there fore x = 0, which is impossible because λznk

→ x
and each znk

has norm 1. This contradiction shows that (u−λ)|Z is bounded
below and therefore that (u − λ)(X) is closed. We still need to prove that
(u − λ)(X) has finite codimension. We define W := X/(u − λ)(X). Since
(u − λ)(X), W is a Banach space. Our aim is to show that dim(W ) < ∞
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and we will do it by showing instead that dim(W ∗) < ∞. Let π : X → W
be the canonical quotient map. It’s clear that π ∈ B(X,W ) and therefore
we get π∗ ∈ B(W ∗, X∗). We claim that π∗(W ∗) = ker(u∗ − λ). Indeed,
first we take any ϕ ∈ W ∗ and compute (u∗ − λ)(π∗(ϕ))(x) for an arbitrary
x ∈ X:

(u∗ − λ)(π∗(ϕ))(x) = (π ◦ u)∗(ϕ)(x)− λπ∗(ϕ)(x)

= ϕ(u(x) + [(u− λ)(X)])− λϕ(x+ [(u− λ)(X)])

= ϕ(u(x)− λ(x) + [(u− λ)(X)])

= ϕ(0 + [(u− λ)(X)])

= ϕ(0W ) = 0

So (u∗ − λ)(π∗(ϕ)) = 0 and therefore π∗(W ∗) ⊆ ker(u∗ − λ). For the
reverse inclusion, we take any σ ∈ ker(u∗−λ). Notice that ker(π) ⊆ ker(σ).
Indeed, if π(x) = 0, then x ∈ (u − λ)(X) and therefore x = (u − λ)(x′) for
some x′ ∈ X, whence σ(x) = σ((u − λ)(x′)) = (u∗ − λ)(σ)(x) = 0 because
σ ∈ ker(u∗ − λ). Thus, there is ϕ ∈ W ∗ such that the following diagram
commutes

X C

W

σ

π ϕ

That is, σ = ϕ ◦ π = π∗(ϕ) ∈ π∗(W ∗). Hence π∗(W ∗) ⊇ ker(u∗ − λ)
and this proves the claim. This gives dim(π∗(W ∗)) = dim(ker(u∗ − λ)).
But since u∗ ∈ K(X∗), by (1) above we have that dim(ker(u∗ − λ)) < ∞.
Thus, dim(π∗(W ∗)) < ∞. Finally, we observe that π∗ is injective, for if
π∗(ϕ) = π∗(θ), then ϕ([x]) = θ([x]) for any [x] ∈ W and therefore ϕ = θ.
This gives

dim(W ∗) = dim(π∗(W ∗)) <∞

as desired. �

Definition. Let u : X → X be linear.

• One clearly has

ker(u) ⊆ ker(u2) ⊆ ker(u3) ⊆ . . .

If ker(un) 6= ker(un+1) for all n ∈ N, we say that u has infinite ascent;
otherwise we say that u has finite ascent and we denote by ascent(u) to
the least integer p such that ker(up) = ker(up+1).
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• Similarly, one has

im(u) ⊇ im(u2) ⊇ im(u3) ⊇ . . .

If im(un) 6= im(un+1) for all n ∈ N, we say that u has infinite descent;
otherwise we say that u has finite descent and we denote by descent(u) to
the least integer p such that im(up) = im(up+1). N

Remark. One checks that ker(um) = ker(un) for all m,n ≥ ascent(u) and
that im(um) = im(un) for all m,n ≥ descent(u). H

Next, we will show that (u−λ) has both finite ascent and descent whenever
u ∈ K(X) and λ ∈ C \ {0}. But first, we need to recall the statement of
Riesz’s Lemma, a fundamental result from functional analysis.

Lemma. (Riesz) If X is a normed vector space and Y ⊂ X a closed proper
subset, then for each 0 ≤ ε ≤ 1 there is x := x(ε) such that ‖x‖ = 1 and

1− ε ≤ d(x, Y ) := inf
y∈Y
‖x− y‖ = ‖x+ Y ‖X/Y

Theorem. Let u ∈ K(X) and λ ∈ C \ {0}. Then (u − λ) has finite ascent
and descent.

Proof. We first show that ascent(u−λ) <∞. Suppose on the contrary that
ascent(u− λ) =∞. Let Nn := ker((u− λ)n), then the inclusion Nn ⊂ Nn+1

is proper for each n ∈ N. Since each Nn is closed, Riesz’s Lemma gives the
existence of a unit vector xn ∈ Nn+1 so that

‖xn +Nn‖Nn+1/Nn
≥ 1

2

We get therefore a bounded sequence (xn)∞n=1 in X. If m < n, then

u(xn)− u(xm) = u(xn)− λxn − (u(xm)− λxm) + λxn − λxm
= λxn + [(u− λ)(xn)− (u− λ)(xm)− λxm]

= λxn + z,

where z := [(u − λ)(xn) − (u − λ)(xm) − λxm]. Since xn ∈ Nn+1 and
xm ∈ Nm+1 we have (u − λ)k(xn) = 0 for k ≥ n + 1 and (u − λ)l(xm) = 0
for any l ≥ m+ 1. Therefore,

(u− λ)nz = (u− λ)n+1(xn)− (u− λ)n+1(xm)− λ(u− λ)n(xm) = 0
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Thus, z ∈ Nn and therefore

‖u(xn)− u(xm)‖ = ‖λxn + z‖ ≤ ‖λxn +Nn‖ = |λ|‖xn +Nn‖ ≥
|λ|
2

This gives that (u(xn))∞n=1 is not Cauchy and therefore won’t admit a con-
vergent subsequence, contradicting that u is a compact operator. Hence,
(u− λ) has to have finite ascent.

Similarly, to show that descent(u − λ) < ∞ we assume for a contradiction
that descent(u−λ) =∞. Let Rn := im((u−λ)n), then the inclusion Rn+1 ⊂
Rn is proper for every n ∈ N. Now, we already know that R1 = (u−λ)(X) is
closed, similarly R2 = (u−λ)2(X) is closed because (u−λ)2 = u2−2λu+λ2,
where u2−2λu ∈ K(X) and −λ2 ∈ C\{0}. In general, each Rn+1 is a closed
proper subset of Rn. Thus, by Riesz’s Lemma there is a unit vector yn ∈ Rn
such that

‖yn +Rn+1‖Rn/Rn+1
≥ 1

2

This gives a bounded sequence (yn)∞n=1 in X. For m < n we have now

u(ym)− u(yn) = λym + s

where s := [(u− λ)(ym)− (u− λ)(yn)− λyn]. Now, since Rn ⊆ Rm+1 ⊂ Rm
we have that (u− λ)(ym), (u− λ)(yn) ∈ Rm+1 and also λyn ∈ Rm+1. Hence
s ∈ Rm+1 and therefore

‖u(ym)− u(yn)‖ = ‖λym + s‖ ≤ ‖λym +Rm+1‖ = |λ|‖ym +Rm+1‖ ≥
|λ|
2

As before, this contradicts compactness of u, so we must have that (u− λ)
has finite descent. �

Definition. An operator u ∈ B(X,Y ) is said to be Fredholm if it has finite
nullity and finite defect; where the nullity is defined by nul(u) := dim(ker(u))
and the defect by def(u) := codim(u(X)). If u is Fredholm, its Fredholm
index is defined by

ind(u) := nul(u)− def(u)

We denote by F(X,Y ) to all the Fredholm operators from X to Y . N

Lemma. If u ∈ F(X,Y ) then u(X) is closed and there is a finite dimen-
sional space Z ⊆ Y such that Y = u(X)⊕ Z.

Proof. Since u is Fredholm it follows that Y/u(X) is finite dimensional.
Then, there are z1, . . . , zn ∈ Y such that Y/u(X) = span{z1+u(X), . . . , zn+
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u(X)}. Set Z := span{z1, . . . , zn} ⊆ Y . Clearly Z ∼= Y/u(X). Suppose now
that y ∈ Z ∩ u(X), that is y = u(x) ∈ Z for some x ∈ X. Then, y gets
mapped to 0, via the isomorphism from Z to Y/u(X), so y = 0. That is,
Z ∩ u(X) = {0}, and since

dim(Y ) = dim(Y/u(X)) + dim(u(X)) = dim(Z) + dim(u(X)),

it follows that Y = Z ⊕ u(X). We still need to check that u(X) is closed.
Indeed, since Z is a finite dimensional subspace of Y , by a previous lemma,
Z is a complemented subspace. That is, there is a closed subspace W ⊆ Y
such that Y = Z⊕W . Thus, Z⊕W = Z⊕u(X), so we get that W = u(X),
whence u(X) is closed. �

The following theorem is a fundamental result in Fredholm theory

Theorem. Let u ∈ F(X,Y ), v ∈ F(Y, Z). Then vu ∈ F(X,Z) and

ind(vu) = ind(u) + ind(v)

Proof. Set Y1 := ker(v) ∩ u(X). Since v is Fredholm, it follows that Y1
is finite dimensional. Then, since Y1 ⊆ u(X), there is a closed subspace
Y2 ⊆ u(X) so that

u(X) = Y1 ⊕ Y2
Similarly, since Y1 ⊆ ker(v) there is a closed subspace Y3 ⊆ ker(v) such that

ker(v) = Y1 ⊕ Y3

Further, Y3 has to be finite dimensional because ker(v) is. There’s also a
subspace Y4 ⊆ Y such that

Y = Y1 ⊕ Y2 ⊕ Y3 ⊕ Y4 = u(X)⊕ Y3 ⊕ Y4

and since u is Fredholm we must have that Y3 ⊕ Y4 has finite dimension
equal to def(u). Therefore, Y4 is also finite dimensional. Next, we define a
map ϕ : ker(vu)→ Y1 by

ϕ(x) := u(x)

By construction ϕ is surjective and ker(ϕ) = ker(u). Hence, it follows that
ker(vu)/ ker(u) ∼= Y1 and therefore dim(Y1) = dim(ker(vu)) − dim(ker(u)).
This gives

nul(vu) = dim(Y1) + nul(u) <∞. (1)

Now, since ker(v) = Y1 ⊕ Y3, we have v(Y ) = v(Y2) ⊕ v(Y4). But also
v(Y2) = v(Y1 ⊕ Y2) = v(u(X)) = vu(X). Hence, v(Y ) = vu(X) ⊕ v(Y4).
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Since v is Fredholm, there is a finite dimensional space W ⊆ Z such that
Z = v(Y )⊕W and dim(W ) = def(v). That is,

Z = vu(X)⊕ v(Y4)⊕W

Since Y4 has finite dimension, v(Y4) is also finite dimensional. Thus,

def(vu) = dim(v(Y4)⊕W ) = dim(v(Y4)) + def(v) <∞ (2)

Therefore, it follows from (1) and (2) that vu is indeed Fredholm. Finally, we
define a map ψ : Y4 → v(Y4) by ψ(y) := v(y). By definition ψ is surjective
and since ker(v)∩Y4 = (Y1⊕Y3)∩Y4 = {0}, it follows that ψ is also injective.
Thus, dim(v(Y4)) = dim(V4). So, again from (1) and (2) we have

ind(vu) = nul(vu)− def(vu)

= (dim(Y1) + nul(u))− (dim(Y4) + def(v))

= dim(Y1) + dim(Y3) + nul(u)− dim(Y4)− dim(Y3)− def(v)

= dim(Y1 ⊕ Y3) + nul(u)− dim(Y4 ⊕ Y3)− def(v)

= nul(v) + nul(u)− def(u)− def(v)

= ind(u) + ind(v)

�

The following theorem presents an immediate application of the Fredholm
index.

Theorem. Let u ∈ K(X) and λ ∈ C \ {0}. Then

(1) (u− λ) is Fredholm and ind(u− λ) = 0.

(2) If p = ascent(u− λ), then

X = ker((u− λ)p)⊕ (u− λ)p(X)

Proof.

(1) We have already shown in a previous theorem that ker(u − λ) is finite
dimensional and that (u − λ)(X) is finite codimensional in X. Hence u is
Fredholm. Recall also that both ascent(u−λ) and descent(u−λ) are finite.
Take m,n ∈ N such that m > n > max{ascent(u − λ),descent(u − λ)}.
Then, nul((u − λ)m) = nul((u − λ)n) and def((u − λ)m) = def((u − λ)n).
Hence, ind((u − λ)m) = ind((u − λ)n), but by the previous theorem this
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means that m · ind(u − λ) = n · ind(u − λ). Since m > n, we must have
ind(u− λ) = 0, as wanted.

(2) Suppose that x ∈ ker((u − λ)p) ∩ (u − λ)p(X). Then, (u − λ)p(x) = 0
and x = (u − λ)p(y) for some y ∈ X. This gives y ∈ ker((u − λ)p+1) but
since p = ascent(u − λ) we have ker((u − λ)p+1) = ker((u − λ)p). Hence
x = (u − λ)p(y) = 0. This gives ker((u − λ)p) ∩ (u − λ)p(X) = {0}, so it
suffices to show that dim(X) = dim(ker((u − λ)p) ⊕ (u − λ)p(X)). Indeed,
it’s known that

dim(X) = dim((u− λ)p(X)) + dim(X/(u− λ)p(X)).

Now, by the previous theorem and (1) above, we have ind((u − λ)p) =
p · ind(u − λ) = 0, so it follows that nul((u − λ)p) = def((u − λ)p). Hence,
dim(ker(u− λ)p) = dim(X/(u− λ)p(X)), and therefore

dim(X) = dim((u− λ)p(X)) + dim(ker(u− λ)p)

as desired. �

Remark. Notice that if u : X → Y is linear, then nul(u) = 0 if and only
if u is injective. Since codim(u(X)) = dim(Y/u(X)), codim(u(X)) = 0 if
and only if u(X) = Y . Hence, def(u) = 0 if and only if u is surjective. This
remark together with the previous theorem give at once the following result,
known as the Fredholm Alternative. H

Corollary. (Fredholm Alternative) If u ∈ K(X) and λ ∈ C \ {0}, then
(u− λ) is injective if and only if it is surjective

Proof. From the previous theorem we know that ind(u − λ) = 0. Hence,
nul(u − λ) = 0 if and only if def(u − λ) = 0. The result follows from our
previous remark. �

In the next theorem we will show, using Fredholm theory, a well known
characterization of the spectrum of a compact operator. But first, we give a
brief review of the spectrum and how it behaves under direct sums. Recall
that if X is a Banach space and u ∈ B(X), the spectrum of u, denoted by
σ(u), is given by

σ(u) := {λ ∈ C : u− λ is not invertible }.

Suppose now that X = Y ⊕ Z, where Y, Z are closed subspaces of X. Let
u ∈ B(Y ) and v ∈ B(Z). We get a map u⊕ vX → X by letting

(u⊕ v)(y + z) = u(y) + v(z)
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Then u⊕v ∈ B(X) because u⊕v = u◦pY +v◦(1−pY ), where pY and 1−pY are
bounded as they are the projections onto Y and Z respectively. Further, u⊕v
is invertible if and only if u and v are invertible and (u⊕ v)−1 = u−1⊕ v−1.
Hence,

λ ∈ σ(u⊕ v)⇐⇒ (u⊕ v)− λ is not invertible

⇐⇒ (u− λ)⊕ (v − λ) is not invertible

⇐⇒ (u− λ) is not invertible or (v − λ) is not invertible

⇐⇒ λ ∈ σ(u) ∪ σ(v).

So, it follows that σ(u⊕ v) = σ(u) ∪ σ(v).

Theorem. If u ∈ K(X), then σ(u) is countable, each non-zero point of σ(u)
is an eigenvalue of u and an isolated point of σ(u).

Proof. Fix λ ∈ σ(u) \ {0}. Then, u − λ is not invertible, so the Fredholm
alternative implies that u − λ is not injective. That is, there is a non zero
x ∈ ker(u−λ), whence u(x) = λx. This gives of course that λ is an eigenvalue
of u.

Now, let p := ascent(u − λ). We already proved that p < ∞ and that
X = Y ⊕Z, where Y := ker((u−λ)p) and Z := (u−λ)p(X) are both closed
subspaces of X. We claim that u|Y ∈ B(Y ) and that u|Z ∈ B(Z). To prove
the claim, it suffices to show that u(Y ) ⊆ Y and that u(Z) ⊆ Z. Indeed, if
y ∈ Y , then

(u− λ)p(u(y)) = (u− λ)p(u(y)− λy + λy)

= (u− λ)p+1(y) + λ(u− λ)p(y)

= 0

because y ∈ Y = ker((u − λ)p) = ker((u − λ)p+1). Hence, u(Y ) ⊆ Y .
Similarly, if z ∈ Z, then z = (u− λ)p(x) for some x ∈ X; so

u(z) = u ((u− λ)p(x))

= u ((u− λ)p(x))− λ ((u− λ)p(x)) + λ ((u− λ)p(x))

= (u− λ)p+1(x) + λ ((u− λ)p(x)) ,

but since we always have (u−λ)p+1(X) ⊂ (u−λ)p(X), the above equations
gives in fact that u(z) ∈ (u−λ)p(X) = Z. So indeed u(Z) ⊆ Z, proving the
claim. Therefore,

u− λ = (u|Y − λidY )⊕ (uZ − λidZ),
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from where we get that

(u− λ)p = (u|Y − λidY )p ⊕ (uZ − λidZ)p

But, by definition of Y , it follows that (u|Y − λidY )p = 0. Hence, there is a
non zero y ∈ Y such that (u|Y − λidY )(y) = 0 and therefore (u|Y − λidY )
is not invertible. That is, λ ∈ σ(u|Y ), and therefore {λ} ⊂ σ(u|Y ). On the
other hand, if µ ∈ σ(u|Y ), there is a non zero y ∈ Y such that u|Y (y) = µy,
whence (u|Y − λidY )(y) = (µ − λ)y, so 0 = (u|Y − λidY )p(y) = (µ − λ)y,
which implies µ = λ. This gives σ(u|Y ) = {λ}. We claim that λ 6∈ σ(u|Z).
Well, since u is compact, it follows that u|Z ∈ K(Z). Therefore, (uZ −
λidZ)p is Fredholm. Notice that by definition of Y and Z, it follows that
ker((uZ − λidZ)p) = {0}, so by the Fredholm alternative (uZ − λidZ)p must
be invertible, whence λ 6∈ σ(u|Z) as we claimed. Thus,

σ(u) = σ(u|Y ⊕ u|Z) = {λ} t σ(u|Z).

This gives that σ(u) \ {λ} = σ(u|Z) is closed in σ(u) and therefore λ is an
isolated point of σ(u).

Since λ ∈ σ(u) \ {0} was arbitrary, it follows that that σ(u) \ {0} consists of
isolated points and hence it’s a countable set. �

Corollary. If {λn : n ∈ N} is the non-zero spectrum of a compact operator,
then

lim
n→∞

λn = 0

Proof. If λ := limn→∞ λn 6= 0, then λ will be a non-isolated point of the
spectrum, contradicting the previous theorem. �

The following example is the original formulation of the Fredholm alter-
native, given by Erik Ivar Fredholm around 1900 while studying integral
equations.

Example. Let k ∈ C([0, 1]2), we have already seen that if u ∈ B(C[0, 1]),
is given by

u(f)(s) :=

∫ 1

0
k(t, s)f(t)dt,

then u is compact. Let λ ∈ C\{0} and g ∈ C([0, 1]). Consider the following
two equations

(u− λ)(f) = g (3)

(u− λ)(f) = 0 (4)
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Then, the Fredholm alternative says that either equation (3) has a unique
solution or that equation (4) has non trivial solutions. Indeed, let {λn : 1 ≤
n < N} be the non zero spectrum of u, where N ∈ N ∪ {∞}. Suppose first
that λ 6= λn for all n. Then, (u − λ) is invertible and therefore equation
(3) has a unique solution given by f := (u − λ)−1(g). However, if λ = λn
for some n, then (u − λ) is not invertible, so the Fredholm alternative im-
plies that (u − λ) is not injective. That is, there is a non zero f such that
(u − λ)(f) = 0, so we have a non trivial solution of (4). Moreover, since
(u − λ) is Fredholm, we know that ker((u − λ)) is finite dimensional and
therefore the solution set of equation (4) is finite dimensional. H

Definition. If u : X → Y is linear, a linear map v : Y → X is a pseu-
doinverse of u if uvu = u N

Remark. If v is a pseudo inverse of u, then uv and vu are idempotents:

(uv)2 = uvuv = uv and (vu)2 = vuvu = vu

Further, we immediately check that ker(vu) = ker(u) and uv(Y ) = u(X). H

We will show that any Fredholm operator has a pseudoinverse, but first we
need a lemma.

Lemma. Let u : X → Y be a linear map between normed spaces. If X is
finite dimensional, then u is bounded.

Proof. Define a norm in X by

‖x‖0 = max{‖x‖, ‖u(x)‖}

Then, ‖u(x)‖ ≤ ‖x‖0. SinceX is finite dimensional, all norms are equivalent.
Hence, there is a constant C such that ‖x‖0 ≤ C‖x‖. Thus ‖u(x)‖ ≤ C‖x‖,
so u is bounded. �

Theorem. If u ∈ F(X,Y ), then u admits a pseudoinverse v that is also
Fredholm and such that 1 − uv, 1 − vu have finite rank. Moreover, when
ind(u) = 0, v can be chosen to be invertible.

Proof. Since u is Fredholm, there is a closed subspace X1 ⊆ X and a finite
dimensional subspace Y1 ⊆ Y such that

X = ker(u)⊕X1 and Y = u(X)⊕ Y1
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The map u1 := u|X1 has trivial kernel and therefore it’s an isomorphism from
X1 to u(X). Further, u1 is clearly bounded, so the open mapping theorem
gives that the inverse u−11 : u(X) → X1 is also bounded. Let v1 := u−11 .
Suppose that ind(u) = 0, then nul(u) = def(u) and therefore dim(ker(u)) =
dim(Y/u(X)) = dim(Y1) < ∞. Then, there is a linear isomorphism w :
Y1 → ker(u). By the previous lemma, w is bounded. We define a map
v : Y → X as follows: on u(X) we set v := v1, on Y1 we set

v :=

{
0 if ind(u) 6= 0

w if ind(u) = 0

That is v = v1 ⊕ 0 if ind(u) 6= 0 and v = v1 ⊕w if ind(u) = 0. In any case v
is a bounded linear map. Moreover, for any x ∈ X,

uvu(x) = u(v1(u(x))) = u1(v1(u(x))) = u(x)

Hence, v is a pseudoinverse of u, which is invertible when ind(u) = 0 (because
here v = v1 ⊕w and both v1 and w are invertible). Notice that ker(v) ⊆ Y1
and therefore, since Y1 is finite dimensional, nul(v) < ∞. Similarly, notice
that X1 ⊂ v(Y ), hence dim(X/v(Y )) < dim(X/X1) = dim(ker(u)) < ∞,
and therefore def(v) < ∞. This gives that v is indeed Fredholm. Finally,
recall that vu is an idempotent, so

(1− vu)(X) = ker(vu) = ker(u)

so (1−vu) has finite rank. Similarly, notice that if u(x)+y1 ∈ u(X)⊕Y1 = Y ,
then

(1−uv)(u(x)+y1) = u(x)−y1−uvu(x)−uv(y1) = y1−uv(y1) = (1−uv)(y1)

Hence, (1 − uv)(Y ) = (1 − uv)(Y1) and since Y1 is finite dimensional, it
follows that (1− uv) also has finite rank. �

Remark. Suppose that X is a finite dimensional Banach space. Then, all
the elements of B(X) are Fredholm. Thus, the theory of Fredholm operators
on finite dimensional spaces is not interesting. In what follows, we only care
about infinite dimensional Banach spaces. H

Theorem. (Atkinson) Let X be an infinite dimensional Banach space and
u ∈ B(X). Then, u ∈ F(X) if and only if u + K(X) is invertible in the
Calkin algebra Q(X) := B(X)/K(X).
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Proof. Suppose first that u is Fredholm. Let π : B(X) → Q(X) be the
canonical quotient map. Then, by the previous theorem u has a pseudoin-
verse v such that 1− uv and 1− vu are finite rank operators and therefore
elements of K(X). Then,

0 = π(1− uv) = π(1)− π(uv) = 1Q(X) − π(u)π(v)

Hence, π(u)π(v) = 1Q(X). Analogously we find π(v)π(u) = 1Q(X), whence
π(u)−1 = π(v). That is, π(u) = u+K(X) is invertible in Q(X).

Conversely, assume that π(u) is invertible in Q(X) with inverse given by
π(v) for some v ∈ B(X). Then, uv = 1 + w1 and vu = 1 + w2 for some
w1, w2 ∈ K(X). Clearly ker(u) ⊆ ker(1+w2) and since w2 is compact, 1+w2

is Fredholm and therefore nul(u) <∞. Similarly, w1 is compact and hence
1 + w1 is Fredholm, so since (1 + w1)(X) ⊆ u(X) we have

dim(X/u(X)) ≤ dim(X/(1 + w1)(X)) <∞,

which gives def(u) <∞. Therefore, u is Fredholm. �

Theorem. Let X be an infinite dimensional Banach space. Then, F(X) is
open in B(X) and the index function ind : F(X)→ Z is continuous.

Proof. By Atkinson’s theorem, we have

F(X) = π−1 (Inv(Q(X)))

It’s well known that Inv(Q(X)) is open in Q(X) and since π is continuous,
it follows that F(X) is open in B(X).

We prove that ind is continuous by showing that is locally constant. Let
u ∈ F(X) and let v ∈ F(X) be a pseudoinverse for u. Then, uvu = u and
1− uv, 1− vu ∈ K(X). Take w ∈ F(X) such that w ∈ B‖v‖−1(u). Then,

‖uv − wv‖ ≤ ‖u− w‖‖v‖ ≤ 1

Hence, s := 1 − (uv − wv) is invertible in F(X) and therefore ind(s) = 0.
Furthermore,

su+ u = su+ uvu = u− (uvu− wvu) + uvu = wvu+ u

Thus, su = wvu and therefore ind(su) = ind(wvu), which becomes

ind(s) + ind(u) = ind(w) + ind(v) + ind(u),

whence ind(w) = −ind(v). Since w ∈ B‖v‖−1(u) was arbitrary, this gives
ind|B‖v‖−1 (u) = −ind(v), so ind is locally constant, as wanted. �
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Corollary. Let X be an infinite dimensional Banach space, u ∈ F(X) and
w ∈ K(X). Then,

ind(u+ w) = ind(u)

Proof. Atkinson’s theorem implies that u + tw ∈ F(X) for any t ∈ [0, 1],
so we can define a function α : [0, 1] → Z by α(t) := ind(u + tw). By
the previous theorem, α is continuous. Since [0, 1] is connected, α([0, 1]) is
a connected subset of Z, and therefore α([0, 1]) consists of a single point.
This means that α is a constant function, so α(1) = α(0), as we needed to
prove. �

Proposition. Let u ∈ F(X). Then, ind(u) = 0 if and only if u is the sum
of an invertible operator and a compact one.

Proof. Suppose first that u = s + w where s ∈ Inv(B(X)) and w ∈ K(X).
Since s is invertible, it has trivial kernel (whence nul(s) = 0) and its range
is X (that is def(s) = 0). Thus, s is Fredholm and ind(s) = 0. By the
previous corollary we have

ind(u) = ind(s+ w) = ind(s) = 0

Now, assume that ind(u) = 0. Then, there is an invertible pseudoinverse
v of u. Hence, π(u) = π(v−1), which means that u = v−1 + w for some
w ∈ K(X). �

Remark. Is easy to find Fredholm operators of index 0 that are not invert-
ible. For instance, if p is a finite rank non-zero idempotent, then 1 − p is
Fredholm, of index 0 and not invertible. H

Recall that two operators u, v ∈ B(X) are said to be similar when there is an
invertible operator s such that u = svs−1. Two similar Fredholm operators
must have the same index, whence the index is an obstruction to determine
whether to operators are similar.

Example. Let H be a Hilbert space and (en)n∈N, (fn)n∈Z be orthonormal
bases for H. The unilateral shift u ∈ B(H) is given by u(en) = en+1 for
n ∈ N, while the bilateral shift v ∈ B(H) is u(fn) = fn+1 for n ∈ Z. Clearly
nul(u) = 0 but def(u) = dim(H/span(en)n≥2) = 1. Therefore, ind(u) = −1.
Since v is invertible, ind(v) = 0. This gives that u and v are not similar.
Further, it’s not possible to find an invertible s and a compact w such that
u = s+ w, as this will give −1 = ind(u) = ind(s+ w) = ind(s) = 0. H
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Exercises

(Ex.1) Let X be a Banach space. If p ∈ B(X) is a compact idempotent,
show that its rank is finite.

Proof. Since p is idempotent, we have p(X) = ker(1 − p), but since p is
compact, it follows that 1−p is Fredholm and therefore has finite dimensional
kernel. Thus,

rank(p) = dim(p(X)) = dim(ker(1− p)) <∞

as wanted. �

(Ex.2) Let u : X → Y be a compact operator between Banach spaces.
Show that if the range of u is closed, then it is finite-dimensional. (Hint:
Show that the well-defined operator X/ ker(u) → u(X), x + ker(u) 7→ u(x)
is an invertible compact operator.)

Proof. We follow the hint. Let a : X/ ker(u) → u(X) be given by
a(x + ker(u)) := u(x). It’s clear that a is a well defined linear operator
between Banach spaces. We now show that a ∈ K(X/ ker(u), u(X)). Let
(xn + ker(u))∞n=1 be a bounded sequence, say by M > 0, in X/ ker(u). For a
fixed n ∈ N, by definition of ‖xn + ker(n)‖ there is a yn ∈ ker(u) such that

‖xn − yn‖ ≤M + 1

Therefore, (xn−yn)∞n=1 is a bounded sequence in X, and since u is compact,
the sequence (u(xn−yn))∞n=1 admits a convergent subsequence in u(X). But,
since yn ∈ ker(u) and by definition of a we have

(u(xn − yn))∞n=1 = (u(xn))∞n=1 = (a(xn + ker(u)))∞n=1

That is, a is compact. Further, notice that a has trivial kernel and that
a(X/ ker(u)) = u(X), whence a is invertible and therefore the open map-
ping theorem gives that a−1 is also bounded. This gives that idu(X) = aa−1

is a compact operator in B(u(X)), which implies that u(X) is finite dimen-
sional. �
(Ex.3) Let X be an infinite dimensional Banach space. Show that if u ∈
K(X), then u is not Fredholm.

Proof. Recall that u ∈ F(X) if and only if u+K(X) is invertible in Q(X).
Since u ∈ K(X), it follows that u + K(X) = K(X), which is not invertible
in Q(X). �
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(Ex.4) Let X, Y be Banach spaces and suppose that u ∈ B(X,Y ) has
compact transpose u∗. Show that u is compact using the fact that u∗∗ is
compact.

Proof. Since u∗ ∈ K(Y ∗, X∗), it follows that u∗∗ ∈ K(X∗∗, Y ∗∗). Now, re-
call that there is an isometric embedding map ·̂ : X ↪→ X∗∗ given by

x̂(ϕ) := ϕ(x) ∀x ∈ X ∀ϕ ∈ X∗

Now, let (xn)∞n=1 be a bounded sequence in X. Then, (x̂n)∞n=1 is a bounded
sequence in X∗∗. Since u∗∗ is compact, it follows that (u∗∗(x̂n))∞n=1 admits
a convergent subsequence in Y ∗∗. Now notice that for any σ ∈ Y ∗, we have

u∗∗(x̂)(σ) = x̂(u∗(σ)) = x̂(σ ◦ u) = σ(u(x)) = û(x)(σ)

That is, u∗∗(x̂) = û(x) and therefore ‖u∗∗(x̂n)‖ = ‖u(xn)‖, which implies
that (u(xn))∞n=1 admits a convergent subsequence, so u is in fact compact.

�

(Ex.5) Let u : X → X ′ and u′ : X ′ → Y ′ be bounded operators between
Banach spaces. Show that the linear map

u⊕ u′ : X ⊕X ′ → Y ⊕ Y ′, (x, x′) 7→ (u(x), u′(x′)),

is bounded with norm max{‖u‖, ‖u′‖}. Show that if u and u′ are Fredholm
operators, so is u⊕ u′, and ind(u⊕ u′) = ind(u) + ind(u′).

Proof. We equiv the direct sum of Banach spaces with the max norm. Then,

‖u⊕ u′‖ = sup
‖(x,x′)‖≤1

‖(u(x), u′(x′))‖

= sup
‖(x,x′)‖≤1

max{‖u(x)‖, ‖u′(x′)‖}

= max{ sup
‖x‖≤1

‖u(x)‖, sup
‖x′‖≤1

‖u′(x)‖}

= max{‖u‖, ‖u′‖}

Now, let N := ker(u), N ′ := ker(u′), C := Y/u(X) and C ′ := Y ′/u′(X ′).
Since both u and u′ are Fredholm, it follows that N,N ′, C and C ′ are all
finite dimensional spaces. Notice that ker(u ⊕ u′) = N ⊕ N ′ and therefore
nul(u⊕ u′) = nul(u) + nul(u′) <∞. Similarly,

(Y ⊕ Y ′)/((u⊕ u′)(X ⊕X ′)) ∼= C ⊕ C ′

Hence, def(u⊕ u′) = def(u) + def(u′) <∞. That is, u⊕ u is Fredholm and

ind(u⊕ u′) = ind(u) + ind(u′)

as wanted. �

24



(Ex.6) If X is an Infinite-dimensional Banach space and u ∈ B(X), show
that ⋂

v∈K(X)

σ(u+ v) = σ(u) \ {λ ∈ C : u− λ ∈ F(X), ind(u− λ) = 0}

Proof. We prove this by double inclusion.

Suppose first that λ ∈LHS. That is, λ ∈ σ(u+v) for all v ∈ K(X). In partic-
ular, 0 ∈ K(X) so we have λ ∈ σ(u). Assume, for the sake of contradiction,
that u − λ ∈ F(X) with ind(u − λ) = 0. Then, there is a pseudo inverse
w ∈ inv(B(X)) such that 1−(u−λ)w is compact. Thus, v := w−1−(u−λ) is
a compact operator, and therefore u+v−λ = w−1 is invertible, contradicting
that λ ∈ σ(u+ v). Hence, λ ∈RHS.

Assume now that λ ∈RHS. That is, λ ∈ σ(u) but λ 6∈ {µ ∈ C : u − µ ∈
F(X), ind(u− µ) = 0}. Assume on the contrary that λ 6∈LHS. Then, there
is v ∈ K(X) such that λ 6∈ σ(u + v). That is, u + v − λ is invertible. This
gives of course that ind(u+ v − λ) = 0. Suppose that (u− λ) is Fredholm,
then since v is compact

ind(u− λ) = ind(u+ v − λ) = 0,

which is impossible because λ 6∈ {µ ∈ C : u − µ ∈ F(X), ind(u − µ) = 0}.
Suppose now that (u−λ) is not Fredholm, that is π(u−λ) is not invertible.
But, π(u−λ) = π(u+v−λ) which is invertible because λ 6∈ σ(u+v), so this
is also impossible. We’ve reached a contradiction and therefore λ ∈LHS. �

(Ex.7) Let X be an infinite dimensional Banach space and u ∈ B(X).
Define the essential spectrum, σe(u), by

σe(u) := {λ ∈ C : (u− λ) 6∈ F(X)}

Show that σe(u) is a non-empty compact subset of σ(u)

Proof. Notice that

σe(u) = {λ ∈ C : π(u− λ) is not invertible in Q(X)}
= {λ ∈ C : π(u)− λ is not invertible in Q(X)}
= σQ(X)(π(u))

Thus, σe(u) is compact and non-empty. Since Inv(B(X)) ⊂ F(X), it follows
that if λ ∈ σe(u), then λ ∈ σ(u), so indeed σe(u) ⊆ σ(u). �
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(Ex.8) Suppose that H1 and H2 are Hilbert spaces. Show that u ∈
F(H1,H2) if and only if u(H1) is closed in H2, and ker(u), ker(u∗) are
both finite dimensional spaces. Conclude that ind(u) = nul(u)− nul(u∗).

Proof. Notice that it suffices to show that ker(u∗) is isomorphic toH2/u(H1)
whenever u(H1) is closed. We define a map Φ : ker(u∗) → H2/u(H1) by
Φ(η) := η + u(H1). We prove Φ is an isomorphism. It’s is clearly linear. If
η ∈ ker(u∗) is such that Φ(η) = u(H1), we have η = u(ξ) for some ξ ∈ H1

and therefore

‖η‖2 = 〈η, η〉 = 〈u(ξ), η〉 = 〈ξ, u∗(η)〉 = 〈ξ, 0〉 = 0

Hence, η = 0. This gives that Φ is injective. To prove surjectivity, we claim
first that ker(u∗)⊥ = u(H1). Indeed, the inclusion u(H1) ⊆ ker(u∗)⊥ is easy.
For the reverse one, notice that it’s also easy to see that u(H1)

⊥ ⊆ ker(u∗).
Hence, since u(H1) is closed it follows taking orthogonal complements that
ker(u∗)⊥ ⊆ u(H1). This proves the claim. Now, since H2 = ker(u∗) ⊕
ker(u∗)⊥, we have in factH2 = ker(u∗)⊕u(H1). Take η+u(H1) ∈ H2/u(H1)
with η = η1+η2 ∈ ker(u∗)⊕u(H1), it follows that Φ(η1) = η+u(H1), whence
Φ is surjective. �
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